Joint outcome modeling using shared frailties with application to temporal streamflow data
نویسنده
چکیده
Recently there has been tremendous interest in the development of tools for joint analysis of longitudinal data and time-to-event data. This has gained emphasis particularly in clinical studies, where longitudinal measurements on a response may be recorded along with a time-to-event outcome. Joint analysis of multiple outcomes beyond longitudinal and survival have also been considered, for example, joint analysis of a variety of generalized linear models including continuous and count data, or continuous and binomial data. With joint analysis of multiple outcomes, the interest may be analysis of one outcome conditional on the others, or, more typically, analysis of all outcomes jointly using latent random effects to link the outcomes. In this project, we study joint-outcome models with the particular application being streamflow at two stations on the prairies. Here, streamflow at the two stations is linked via an annual random effect. Smoothers are used to flexibly account for temporal trends in the model. An important aspect is determining the amount of information required in order to estimate the link parameter which connects the two processes, and we investigate this via simulation in the context of the streamflow analysis.
منابع مشابه
Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملA semiparametric joint model for longitudinal and survival data with application to hemodialysis study.
In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared par...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملBayesian semiparametric frailty selection in multivariate event time data.
Biomedical studies often collect multivariate event time data from multiple clusters (either subjects or groups) within each of which event times for individuals are correlated and the correlation may vary in different classes. In such survival analyses, heterogeneity among clusters for shared and specific classes can be accommodated by incorporating parametric frailty terms into the model. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017